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ABSTRACT: A finite element analysis (FEA) was conducted to 
examine the feasibility of determining the shear modulus of an 
adhesive in a bonded geometry using a three-point bending test 
on a sandwich beam specimen. The FEA results were compared 
with the predictions from two analytical solutions for the 
geometry used to determine the impact of the assumptions that 
were made in these analyses. The analytical results showed 
significantly different to the values obtained from other 
experiments on bulk samples of the adhesive in the glassy region. 
Although there were some agreements in rubbery region, the 
negligible sensitivity of the beam stiffness to the presence of 
adhesive layer makes the agreements very questionable. To 
examine the possible explanations for these differences in glassy 
adhesives, sensitivity analysis was conducted to explore the 
effects of experimental variables. Some possible reasons for the 
differences are discussed, but none of these reasons taken alone 
satisfactorily account for the discrepancies. Until an explanation 
is found, the three-point bending test using a sandwich beam 
specimen to determine the adhesive shear modulus might not be a 
desirable test method, at least for the range of geometry 
examined in this study. 
KEY WORDS:  Adhesives, finite element analysis, 3-point 
bending sandwich beam, shear modulus, sensitivity analysis, 
contact problem 

Introduction 

There is considerable interest in measuring the shear 
properties of an adhesive when it is in a bonded joint. Such 
measurements allow one to assess the state of the adhesive 
and monitor it as a function of time. For example, changes 
in properties during bond formation can be monitored, 
information on the quality of the bond can be obtained, and 
degradation that occurs during environmental exposure can 
be followed. Many test methods for determining the shear 
modulus of adhesive materials have been reported in the 
literatures [1-6]. Commonly used test methods, such as the 
napkin ring or thick adherend test, require costly 
machining and fabricating of the test specimens as well as 
very careful alignment and testing during the 
measurement. In 1987, Moussiaux et al. [1] proposed a test 
method that is simple in both sample preparation and 
measurement procedure. It involves a three-point bending 
test of a specimen made by bonding together two substrate 
bars with the adhesive layer (sandwich beam). The 
experiment involves measuring the bending stiffness of the 
sandwich beam, and combining the result with an 
appropriate analysis to determine the shear modulus of the 
adhesive. Moussiaux et al. [1] provided a strength-of-
materials solution to deduce the shear modulus. Their 

analysis depends on an assumption that the adhesive is 
constrained to a thin layer in the core of a thick bonded 
structure.  

Spigel and Roy [7] compared the adhesive shear 
modulus obtained from a tensile test on bulk material with 
the calculated adhesive shear modulus obtained from the 
three-point bending test of a sandwich beam using the 
analytical solution provided by Moussiaux et al. The 
results showed an inconsistency of up to one order of 
magnitude between these two values. The authors 
replicated the three-point bending result by performing a 
finite element simulation to validate their experimental 
measurement. They briefly mentioned some possible 
causes of the inconsistency between the shear moduli 
measured, but they did not provide detailed mechanistic 
analyses. 

In addition to Moussiaux et al. [1], a number of other 
authors have addressed the problem of bending in a 
sandwich beam under a variety of different boundary and 
loading conditions [e.g., 8-13]. The analysis of Adams and 
Weinstein [10] is particularly relevant to the test under 
discussion here since it also addresses the three-point 
bending of a sandwich beam. In their solution, the 
adherends were assumed to be thin enough that the 
induced axial stress can be approximated as constant along 
the cross section. The assumptions in this analysis differ 
from those made in the derivation of Moussiaux et al [1], 
but both formulations are limited to linear elastic materials.   

One particularly attractive feature of the sandwich 
beam test is that the standard viscoelastic test equipment 
can utilize the 3-point bend geometry. Consequently, 
extension of the method to viscoelastic characterization of 
the adhesive might be possible. One constraint, however, is 
that the range of geometry that can be used in the 
viscoelastic characterization equipment is limited. A recent 
study by Miyagi et al. [6] investigated this potential and 
found that the behavior of sandwich beam was liner 
viscoelastic. Unfortunately, at low temperatures where the 
adhesive behavior was elastic, calculations with the 
analyses discussed above produced values for the adhesive 
shear modulus that were not realistic. One possible 
explanation is that the geometry required by the test 
apparatus violates the assumptions in the analyses. The 
purpose of this paper is to examine this question by 
conducting finite element analyses (FEA) for the 
geometries used in the viscoelastic study as well as those 
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outside this range. In addition, comparisons are made with 
the two analytical solutions to see the effects of the 
assumptions made in each. Finally, a series of sensitivity 
studies are conducted to determine the effects of both 
controlled variables (bond thickness, adherend stiffness 
etc.) and uncontrolled experimental variables (e.g., 
interfacial debonding, or variation of the bond thickness). 

Analytical Solutions 

The test geometry is shown in Fig. 1. The stiffness of 
the sandwich beam loaded in three-point bending (Fig. 1) 
is called Ks, which is equal to P/δ,  where P is the 
concentrated load at the center of the specimen, and δ is 
the corresponding deflection at the center under the 
loading. The two analytical solutions discussed above 
relate this stiffness to the various elastic and geometric 
variables of the specimen including the shear modulus of 
the adhesive, Ga. With the measured stiffness and the 
elastic and geometric variables other than Ga known, an 
iterative process can be used to determine the appropriate 
value of Ga.  

Load, P

2t
L (2l)   

h

b
cross section

h

 
Fig.1 The 3-point bending sandwich beam 

Analytical Solution 1: The solution by Moussiaux et 
al. [1] for the stiffness Ks1 of an adhesively bonded 
sandwich beam loaded in three-point bending assumes a 
state of pure shear in the adhesive layer and linear 
elasticity for the sandwich beam. This gives a result of: 
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where L (= 2l in Fig. 1) is the loading span for the 
sandwich beam; h and t are the thickness of the adherend 
and half thickness of the adhesive layer, respectively; Ef is 
the Young’s modulus of the adherends; Gf and Ga are the 
shear modulus of the adherends and adhesive layer, 
respectively. In this analytical approach, the assumption of 
the adhesive layer being in a state of pure shear means that 
the adhesive layer should be very thin compared with the 
thickness of the adherend and the length of the beam. 

Analytical Approach 2: The analysis by Adams and 
Weinstein [10] was developed for a structure with thin 
adherend sheets on a core that is taken as the adhesive 
layer. Their result for the stiffness of the sandwich beam in 
three-point bending, Ks2, is given by:  
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where Ea is the Young’s modulus of the adhesive 
(Ea=2(1+νa)Ga, with νa the Poisson’s ratio of adhesive), K 
is the sum of the bending rigidity of three separate 
homogenous beams (two adherend bars and one adhesive 
layer) bending about their own axes, KT is the pure 
bending rigidity of the sandwich beam without the shear 
contribution, and b is the width of the sandwich beam. In 
this approach, no special restriction was made on the 
thickness of adhesive layer, as long as the adherends were 
thin enough to satisfy the requirement that the induced 
axial stresses in the adherends can be approximated as 
constant across the section. Contrary to the previous 
analytical approach, this solution includes not only the 
contribution of adhesive shear deformation, but also the 
contribution of adhesive bending to the total beam 
stiffness. 

Finite Element Analysis 

 For the analysis conducted here, a commercial finite 
element program, ABAQUS [14] was used.  Only a half-
length sandwich beam (Fig.2) was needed for the FEA 
because the geometry and loading conditions are 
symmetric. For the best accuracy, the sandwich beam 
specimen should be modeled using a three-dimensional 
(3D) finite element analysis. We compared the two-
dimensional approach and 3D analyses, however, and 
found that the added cost and complexity of 3D analysis 
was not warranted since the 2D (plane stress) approach 
provided information accurate enough for this study. 
Therefore, all the analyses performed here used the 2D 
approach. The deflection of the beam was assumed to be 
much smaller than the beam thickness, so a linear analysis 
was adopted. Also, in order to mimic possible debonding 
during the fabrication of the specimen, an analysis was 
performed using the symmetric model and assuming 
symmetric debonding areas along one of the two 
adherend/adhesive interfaces (Fig.2). Four-node 
isoparametric elements were used to model the sandwich 
beam, with the element dimensions continuously 
decreasing towards the loading and stress concentration 
points. The effect of adhesive–adherend contact that may 
develop in the debonded portion of the interface was 
studied using a built-in contact element in ABAQUS. A 
Coulomb-type friction was assumed for the debonding 
interfaces between the adhesive and adherends [15]. A 
parametric study showed that the friction has only a 
marginal effect on the data reported in this work. 
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Fig.2 The model of FEA for the 3-point bending 

 sandwich beam (L = 2 l) 

Geometry and Material Properties 

All of the analyses (FEA and two analytical 
approaches) were applied to the geometries and material 
system used in the experiments by Miyagi et al. [6]. They 
determined the modulus of the adherends by measuring a 
single adherend bar (steel) in the three-point bend 
apparatus, and this produced a value typical for steel, 
(200.9 ± 10) GPa ( ± indicates the standard uncertainty in 
the data here and in the Tables). The Poisson’s ratio of the 
steel adherends was taken as 0.3 [1] so the shear modulus 
of the adherend, Gf, is (77.3 ± 3.9) GPa. The loading span, 
L, was (40.88 ± 0.05) mm, the width of the beam, b, was 
(12.70 ± 0.05) mm, and the thickness of each adherend 
bar, h, was (0.508 ± 0.01) mm. This results in an L/h ratio 
of approximately 80. Three different adhesive thicknesses, 
2t, were examined: (0.152 ± 0.008) mm, (0.573 ± 0.017) 
mm, and (1.297 ± 0.066) mm. Poisson’s ratio for the 
adhesive was assumed to be 0.35 [6]. For the analyses, the 
shear modulus of the adhesive was varied from 100 MPa to 
105 MPa. In addition to the adhesive thicknesses used in 
the experiments, two other values corresponding to h/t = 
10 and h/t = 100 were examined in the FEA studies. 
Finally, a second value of the aspect ratio, L/h = 40, was 
examined by FEA to assess the importance of this 
parameter.   

Results and Discussion 

Comparison of Different Analyses: 
Fig. 3 shows the relationship between the adhesive 

shear modulus and the sandwich beam stiffness obtained 
from FEA, KFEA, for various adhesive layers. If sensitivity 
in the experiment is defined as the change in stiffness Ks 
needed to produce a fractional change in Ga, then the 
sensitivity is given by dlnKs/dlnGa. This quantity is 
directly related to the slope in the semi-log plot of stiffness 
vs adhesive shear modulus (Fig. 3). As seen in this figure, 
regardless of the adhesive shear modulus, the sensitivity is 
lower when adherend to adhesive thickness ratio, h/t, is 
high (thin adhesive layer). In addition, the sensitivity 
becomes higher for most thick bond thicknesses when the 
adhesive shear modulus Ga is larger than 10 MPa. Below 
10 MPa the change in stiffness is very small for most bond 
thicknesses, it means that the sensitivity of the beam 
stiffness to the presence of adhesive layer is very low. 
Unfortunately, this covers most of the rubber range that is 
of importance for a polymer adhesive. 

Fig. 4 shows the variation of the total stiffness (KFEA) 
and the pure bending stiffness (KB) of the sandwich beam 

as a function of the adhesive shear modulus. KFEA was 
calculated from FEA. KB was obtained from the following 
equation through the equivalent section method from 
Timoshenko [16], without including the contribution of the 
shear deformation: 

T
B 3

6KK =
!

                   (7) 

where KT is defined in eq. (5). The results in this figure 
correspond to two bond configurations, the thin (h/t = 
6.68) and thick (h/t = 0.783) bonds tested by Miyagi et al. 
[6]. 

The difference between the pure bending stiffness and 
the total stiffness of the sandwich beam shown in Fig. 4 is 
defined as the shear-reduced stiffness and is attributed to 
the shear deformation of the bond. For the thin and thick 
bonds, the pure bending stiffness is virtually constant with 
respect to the change of adhesive modulus, except when 
the adhesive modulus is comparable to that of the adherend 
in the thick bond. The stiffness of the sandwich beam with 
a thin adhesive layer differs from that of the thick bonded 
sandwich beam primarily by the less pronounced shear 
deformation of the bond interlayer with softer adhesive 
material. In addition, one can notice from this figure that, 
regardless of the bond thickness, when the adhesive 
modulus is very low (lower than 10MPa in rubber range), 
the sandwich beam can be treated as three separate 
homogenous beams bending about their own axes. 
Consequently, the total stiffness of sandwich beam can be 
approximated very well by the sum of the three 
individually derived stiffnesses for each beam. Since the 
individual stiffness of the adhesive beam is much less than 
that of adherend beams, this implies that the sensitivity of 
the sandwich beam stiffness to the presence of the 
adhesive layer is diminished at the range of thickness ratio 
considered here. When the adhesive modulus is 
comparable to that of the adherend, the total beam stiffness 
converges to the pure bending stiffness of the beam, since 
the shear deformation of the bonded layer becomes 
negligible. 

Figs. 5 and 6 show comparisons of the sandwich beam 
stiffness obtained from eqs. (1) and (4), respectively, to the 
results obtained from FEA. As shown in Figs. 5 and 6, 
both analytical approaches, especially eq. (1), typically 
overestimate the beam stiffness for a given adhesive shear 
modulus. This implies that the calculated adhesive 
modulus from an experimental measurement of the beam 
stiffness using either of these two analytical solutions is 
probably lower than the actual value of the adhesive shear 
modulus. One also can see that eq. (4) compares much 
better with the FEA results in evaluating the beam stiffness 
over the ranges of the adhesive shear modulus and bond 
thickness considered. The derivation of eq. (4) is based on 
the assumption that the adherends were thin compared to 
the adhesive layer. However, note from Fig. 6 that eq. (4) 
actually compares better with the FEA results when the 
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adherends were relatively thick. This is because the 
sensitivity of the sandwich beam stiffness to the presence 
of the adhesive layer becomes negligible when the 
adherend is relatively thick, (see Fig. 3). In the case of 
thick adherends, for stiffer adhesives, the sandwich beam 
can be treated as a solid homogeneous beam, while for 
softer adhesives, the sandwich beam behaves as three 
individual beams bending with their own axes. In either 
case, eq. (4) can pick up the nature of these bending 
behaviors.  
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Fig.3 The stiffness of the sandwich beam KFEA 
obtained from FEA 
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Fig.4 The variation of the total stiffness and bending stiffness 

with respect to adhesive shear modulus 
Sensitivity Study: 

One way to increase the sensitivity of the sandwich 
beam deflection to the presence of the adhesive is to 
decrease the aspect ratio of the adherend (L/h) from 
approximately 80, which is the case for the samples 
analyzed above, to 40. This is seen in Fig. 7 where the 
stiffness of the sandwich beam is plotted against the log of 
the adhesive shear modulus for two samples with the same 
thickness dimensions but different span lengths, L. The 
effects of decreasing L on the predictions from eqs. (1) and 
(4) were also examined. From eq. (1) the shape of the 
curves for L/h = 40 are nearly identical to those for the 
longer beam (L/h = 80.0) except the curves for the short 
beam are shifted to the right (toward higher shear moduli). 
This can be understood by noting that the lower aspect 
ratio will redistribute the dominance of shear deformation 
due to the adhesive modulus, and the analytical approach 

of eq. (1) assumes a pure shear state in the adhesive layer. 
Fig. 8 shows the comparison of eq. (4) with FEA, and the 
results show that decreasing the aspect ratio from 80 to 40 
will increase the overestimate of the beam stiffness with 
eq. (4) for all the adhesive shear moduli considered. This 
can be explained by recognizing that eq. (4) assumes the 
deformation of sandwich beam is represented as three 
separate beams bending about their own axes (without 
shear deformation) plus the shear stress induced by the 
bond between their interfaces. However, for a shorter 
beam the shear deformation in each individual layer should 
be included. 
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Fig.5 Comparison of the analytical stiffness based on eq. (1), 

KS1, to the stiffness (KFEA) from FEA 
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Fig.6 Comparison of the analytical stiffness based on eq. (4), 

KS2, to the stiffness (KFEA) from FEA 
Comparisons with Experimental Results: 

As indicated above, the specimen geometry was based 
on the experimental study by Miyagi et al. [6]. Although 
that work looked at viscoelasticity, measurements were 
also made in regions where the adhesive’s behavior should 
be elastic. Tests were run at 55 oC, which is well above the 
Tg of the adhesive ( ≈ 30 oC), so the behavior is rubbery, 
and at 5 oC, which is well below the Tg of the adhesive, so 
the behavior is glassy. Tables 1 and 2 give the 
experimentally determined stiffnesses (± indicates standard 
uncertainty in the data) for beams with three different 
adhesive thicknesses, along with the adhesive shear moduli 
calculated from these stiffnesses using eqs. (1) and (4), and 
FEA. As noted in the study by Miyagi et al. [6], the 
calculated values seem unreasonably low, particularly in 
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the glassy range. For comparison, they determined values 
for the shear modulus of the adhesive in the glassy range 
(at 5 oC) using measurements on bulk specimens. Because 
the adhesive layers in the test specimens were not very thin 
compared to molecular dimensions, the modulus of the 
adhesive in the sandwich was expected to be similar to that 
for a bulk sample.  
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Fig.7 Beam stiffness from finite element analysis, KFEA, as a 

function of adhesive shear modulus, Ga, for samples with 
two different span lengths, L 
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Fig.8 Comparison of the analytical stiffness based on eq. (4), 

KS2, to the stiffness (KFEA) from FEA 
under different aspect ratio L/h (Gf = 77.3 GPa) 

The results from the bulk samples are shown in Table 3 
(± indicates standard uncertainty in the data) and support 
the hypothesis that eqs. (1) and (4) do not give the correct 
value. In more recent work, the adhesive shear moduli of 
bulk adhesive samples were measured in our laboratory 
using dynamic mechanical torsion tests over the 
temperature range from 0 oC to 60 oC. This provides data 
at both the temperatures of interest here: rubbery (55 oC) 
and glassy (5 oC) behavior. These results are also included 
in Table 3, and a comparison shows that eq. (1) gives 
results that are too low for both the glassy and rubbery 
moduli.  Eq. (4), on the other hand, gives good agreement 
in the rubbery range and is much closer to the correct value 
in the glassy region, but is still too low. The FEA results in 
Tables 1 and 2 are found to be only slightly larger than the 
predictions from eq. (4). This leads to two important 
conclusions. First, the lack of agreement for adhesive shear 

modulus in the glassy region (Table 1) indicates that the 
assumptions made in the analytical solutions can’t provide 
an explanation for these discrepancies, and without such an 
explanation, the sandwich beam can’t be used to 
characterize glassy adhesives. The tables also show 
another problem with using the sandwich beam test for 
characterizing glassy adhesives. The uncertainties in the 
calculated values are very high; that is, small uncertainties 
in the measurement of test parameters generate large 
uncertainties in the calculated values for shear modulus. 
This is undesirable in a test method. 

Table 1. Shear Modulus Deduced From Three-point Bending of Sandwich Beam at 5 oC 

Calculated Adhesive Shear Modulus (MPa) Sample 
Thickness 
Ratio (h/t) 

Exp. Stiffness 
(N/mm) eq. (1) eq. (4) FEA 

6.68 ± 0.35 218.4 ± 3.2 232 ± 72 438 ± 199 452 ± 205 

1.77 ± 0.05 445.3 ± 7.4 160 ± 34 606 ± 130 620 ± 133 

0.783 ±0.040 882.2 ± 34.3 146.2 ± 23 574 ± 88 596 ± 91 

Table 2. Shear Modulus Deduced From Three-point Bending of Sandwich Beam at 55 oC 

Calculated Adhesive Shear Modulus (MPa) Sample 
Thickness Ratio 

(h/t) 

Exp. Stiffness 
(N/mm) eq. (1) Eq. (4) FEA 

6.68 ± 0.35 50.96 ± 0.89 0.71 ± 0.13 2.83 ± 0.50 2.96 ± 0.52 

1.77 ± 0.05 48.45 ± 0.72 0.75 ± 0.15 2.99 ± 0.61 3.25 ± 0.66 

0.783 ±0.040 50.97 ± 0.40 0.79 ± 0.12 3.14 ± 0.47 3.49 ± 0.52 

Table 3.  Shear Modulus from measurements on bulk specimens (details in Ref. 1) 
 

 

 

 

 
Second, for soft adhesives (rubbery region), note that 

the measurements of beam stiffness are insensitive to the 
change of bond thickness (Table 2). Also, one can see 
from that table that a 1 % relative uncertainty in the 
measurement (very small uncertainty) can cause a 15 % 
relative uncertainty in the calculated modulus. Therefore, 
although there is agreement between the shear modulus 
values measured on bulk samples and those calculated 
from the results of the sandwich beam test (Table 2), the 
lack of the sensitivity of beam stiffness to the presence of 
the adhesive layer still makes this test method 
questionable, even for adhesives in the rubbery state. 

Possible Explanations for the Discrepancy: 
Since the lack of sensitivity discussed above is a 

fundamental problem for using the sandwich beam test to 
determine the adhesive shear modulus in the rubbery state, 
we will focus on the discrepancies observed between the 
shear modulus measured on bulk samples and those 
calculated from the results of the sandwich beam test in the 
glassy region. Two possible sources for the discrepancy 
are considered here, first the uncertainties in the 
measurement of the experimental parameters, and second 

Shear Modulus (MPa) 
Test Method 

5 oC 55 oC 

Dynamic mechanical test 1160 ± 64 2.88 ± 0.17 

Double lap test 1400 ± 300 ---- 

Bending test 1060 ± 70 ---- 
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the effects of undetected voids and/or debonds at the 
interfaces between the adherends and adhesive.  

Sensitivity Analyses: To examine the first question, a 
sensitivity analysis was performed using eq. (4) since it 
agrees closely with the FEA analysis. The uncertainty in 
calculating the shear modulus δGa was considered 
primarily due to the uncertainty in the measurements of the 
bond thickness δ(2t) and/or the adherend stiffness δ(Ef). 
Theoretically, δGa can be calculated from the following 
equation: 

S S S
S f a

f a

K K KδK = δ (2t) + δ (E )+ δ (G )
(2t) (E ) (G )

∂ ∂ ∂
∂ ∂ ∂

  

         ( ) .

2
2S

2
K1 (2t) .

2! (2t)
∂+ δ +
∂

                   (8) 

with the assumption that δKs equals to zero. 

First we assessed the effect of the variation in adherend 
stiffness δ(Ef) to the calculated adhesive shear modulus 
δ(Ga) using the eq. (4) and FEA. We found that for the 
glassy adhesive, small variation (about ± 5%) in the 
adherend stiffness will result in very large variation (up to 
100%) in the calculated value for the shear modulus when 
the adhesive layer was very thin (h/t=6.68 or more). The 
easy way to explain this result is to consider the pure 
bending eq. (7), because for very thin layer the shear 
contribution to the beam stiffness becomes smaller and 
negligible with the adhesive in glassy range (see Fig. 4). 
Based on eqs. (5) and (7) with the assumption that δKB 
equals zero, we have 

a fa a f(E ) (I I ) (E )δ = − δ                (9) 

For very thin adhesive layer, the ratio of fa aI I  will 
approach 200 with h/t=6.68. Since the uncertainty in the 
calculated shear modulus ( a a a aG G E Eδ δ= ) is 

magnified by the ratio of fa aI I , the uncertainty will 
become very large for small variation of adherend 
stiffness. For thicker adhesive layer, this effect is reduced 
so uncertainty in the calculated adhesive shear modulus is 
smaller (about 10% in relative uncertainty at h/t=0.78) for 
similar variations of adherend stiffness. Although this 
effect is large and limited to the glassy range, it is also 
dependent on adhesive layer thickness. Consequently, it 
does not provide a satisfactory explanation for the 
discrepancy discussed above since that is approximately 
independent of adhesive thickness (see Table 1).  

The second parameter studied was the adhesive layer 
thickness that is the hardest parameter to control and 
measure. The effect of an uncertainty in the bond 
thickness, denoted by δ(2t), can be approximately related 
to the uncertainty in the calculated adhesive modulus, δGa, 
as follows:  

S S
a

a

K K(G ) (2t)
(2t) (G )

 ∂ ∂δ = − δ ∂ ∂ 
            (10) 

For a stiffer adhesive shear modulus in glassy range, 
the eq. (10) can be used to approximate δGa only with very 
small δ(2t) since the sensitivity to the bond thickness is 
high. For thin adhesive layers, the uncertainty of the bond 
thickness can be large so the sensitivity calculates are 
made using numerical methods with eq. (4).   

Fig. 9 shows the numerically calculated variations of 

aGδ  normalized by the adhesive shear modulus ( aG ) with 
respect to (2t)δ  normalized by the adhesive thickness (2t). 
Three different bond configurations (h/t = 6.68, 1.77 and 
0.783) were evaluated based on the experimentally 
determined beam stiffness shown in Table 1. We adopted 
the adhesive shear modulus 1.06 GPa at 5 oC obtained by 
dynamic testing on bulk adhesive (Table 3). From the 
results in this figure, the potential error in calculating the 
shear modulus due to the error in measuring the bond 
thickness can be seen to increase dramatically when the 
adhesive layer becomes stiffer (high Ga). If the bond 
thickness used in the calculation is measured larger than 
the actual value ( (2t)δ > 0), the adhesive shear modulus in 
the glassy region (5 oC) will be significantly 
underestimated ( aGδ < 0). This is exactly what is needed 
to explain the discrepancy discussed above. On the other 
hand, the over estimation of bond thickness would need to 
be significant (by 10 % to 15 % of the thickness). Table 1 
shows the discrepancies in shear modulus to be the same 
for all bond thickness. Thus the difference between the 
assumed bond thickness and actual bond thickness may 
need to vary with bond thickness in a specific way to get 
an adhesive shear modulus that was independent of the 
bond thickness. Consequently, although this explanation is 
encouraging, it is not completely satisfactory. 
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Figure 9:  The uncertainty analysis results based on eq. (4) 
Contact Problem: The second area examined, as a 

possible explanation for the discrepancies is the presence 
of an undetected debond region in the adhesive or along 
the interfaces between adhesive and adherends. This could 
result from improper wetting or formation of a void during 
fabrication. Moreover, the mismatch of the material 
properties in the bonded interfaces can produce thermally 
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induced stresses during fabrication, and this might produce 
an interface debonding. Such flaws in the adhesive bond 
would lower the stiffness of the beam and a calculation of 
the adhesive shear modulus would yield an artificially low 
value. Consequently, the effect of possible pre-existing 
debonding areas on the stiffness of the sandwich beam 
loaded in three-point loading was also examined by FEA. 
In these studies, the debonds were assumed to reside along 
the upper adhesive-adherend interface (Fig. 2) and be 
symmetrically located relative to the centerline so that the 
analysis can be performed with half of the beam (Fig. 2).  
Specimens were analyzed with debonding at three different 
locations: the free edge, the quarter point, and center of the 
sandwich beam along the upper interface (Fig. 2). A 
separate study indicated that placing the debonding area at 
the upper or lower interface does not make much 
difference in the reduction of beam stiffness, since the 
shear stress does not vary significantly over the range of 
adhesive thickness used in the experiments. 

Figs. 10 and 11 present the change of the beam 
stiffness with respect to adhesive shear modulus for two 
bond configurations with one debonding area. The ratio of 
debond length to beam length (a/l) was equal to 0.1 here, 
and h/t was varied between 6.68 and 0.783 (thin bond and 
thick bond). From the results shown in the Figs. 10 and 11, 
the different debond locations were found to influence the 
beam stiffness to different degrees. The influence becomes 
more pronounced when the debond location moves from 
the center of the sandwich beam to the free edge, 
irrespective of the bond thickness. This is because the 
shear stress in the interlayer along the length of the bonded 
beam increases from the center to the edge. Consequently, 
strain energy lost due to the existence of the debonding 
area is higher when the debond is at the edge than when it 
is at the center. These figures also show the FEA result for 
the change of beam stiffness when more than two existing 
debonding areas are present at different locations (at the 
quarter length and the edge of the beam). The resulting 
reduction in the beam stiffness is equal to the superposition 
of two single debonding areas because of the linearity. As 
indicated in Figs. 10 and 11, the reduction of beam 
stiffness due to the possible existence of interfacial debond 
is by a fraction of about 4 % at maximum when the 
adhesive shear modulus is 1.06 GPa. This reduction will 
correspond to a 10 % increase of the calculated shear 
modulus from eq. (4). Even with this increase, the shear 
modulus obtained from eq. (4) using three-point bending 
test is still lower than the expected value (1.06 GPa). That 
means the reduction of the beam stiffness caused by the 
interfacial debonding is likely not the primary source for 
the discrepancies in shear modulus measurements. 

The data in Figs. 10 and 11 also indicate that the 
reduction of the beam stiffness is limited when the 
adhesive modulus is low. This is because the sandwich 
beam could be treated as three separate homogenous 
beams bending about their own axes (as mentioned 

previously), and the existence of the debonding area 
becomes immaterial. When the adhesive modulus becomes 
comparable to the adherend modulus, the specimen can be 
treated as a homogeneous beam under pure bending 
deformation only (see Fig. 4).  The shear deformation of 
the bond becomes negligible and the local perturbation due 
to the existence of the debonding will not affect this global 
mechanical response. Fig. 12 displays the reduction of the 
beam stiffness due to the change of the debond size for the 
adhesive modulus of 1.06 GPa and two bond 
configurations. The result in this figure demonstrates that 
the thicker bond has more reduction in the beam stiffness 
than that of the thinner bond. This is because there are 
higher shear stresses developed in the thicker bond. 
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Figure 10:  The comparison of results between debonding and no-
debonding with respect to adhesive shear modulus Ga  

(h/t = 6.68, a/l = 0.1, a: debond length) 
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Figure 11:  The comparison of results between debonding and no-
debonding with respect to adhesive shear modulus Ga  

(h/t = 0.78, a/l = 0.1, a: debond length) 

In terms of debonds as explanations for the discrepancy 
discussed above, however, there are several problems. The 
most obvious is that the debonging areas would need to be 
very large to explain the differences observed in the glassy 
region. Moreover, for some thicknesses the effect is as 
large in the rubbery region as it is in the glassy range. 
Finally, thick bonds show a bigger effect than thin bonds, 
and this is the reverse of what is seen in Tables 1~3. 
Consequently, this does not appear to be a factor 
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contributing to the discrepancies in the sandwich bond 
experiment. 
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Figure 12:  The comparison of results between debonding and no-
debonding with respect to the length of debonds (Ga = 1.06 GPa) 

Conclusions 

This paper utilizes a FEA analysis to assess the 
feasibility of the three-point bending test on a sandwich 
beam specimen to characterize the shear modulus of an 
adhesive in a bonded geometry. The results are compared 
with two analytical solutions for this configuration, and the 
comparison indicates that the solution provided by Adams 
and Weinstein [4] is more appropriate for the combinations 
of the adhesive modulus and bond thickness that were used 
in the experiments of Miyagi et al [6]. For soft adhesives 
(rubbery behavior) although there is agreement between 
values for the shear modulus of the adhesive measured on 
bulk samples and calculated from the sandwich beam 
results using either FEA or the Adams and Weinstein 
equation, the poor sensitivity of the sandwich beam 
stiffness to the presence of the adhesive layer (the second 
column of Table 2) makes this agreement very 
questionable. Often, one might be misled to believing the 
test results due to this agreement. For glassy adhesives, the 
agreement was not good. Moreover, the uncertainties in 
the calculated shear modulus from the bending tests were 
high because the results are very sensitive to adhesive 
thickness and adherend modulus for glassy adhesives. The 
study also examined possible causes for discrepancy found 
in glassy adhesives. Factors studied included the 
uncertainty in the adherend stiffness, adhesive bond 
thickness and the presence of a non-bonded region along 
the interfaces between adhesive and adherends. 
Unfortunately, none of the possible causes taken singly can 
provide a satisfactory explanation for the discrepancies. 
Consequently, the sandwich beam test is not a desirable 
method to characterize the adhesive shear modulus. 
Additional studies are needed before the sandwich beam 
can become an acceptable method for evaluating 
adhesives, at least with the geometry range studied here. 
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